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NOMENCLATURE

A rotor disk area, πR2 , or spar material cross sectional area, in2

Ae thin-walled spar section enclosed area, in2

a lift curve slope, rad-1

b blade semichord, c/2, in
b normalized blade semichord, b R
c blade chord, in
c normalized blade chord, c/R
CT rotor thrust coefficient,  C T A RT = ρ Ω2 2

Cm section pitching moment coefficient, C M V cm = θ ρ1
2

2 2

Cml linear model static pitching moment coefficient

Cms measured static pitching moment coefficient

Cz section lift coefficient, C L V cz z= 1
2

2ρ
Czl linear model static lift coefficient

Czs measured static lift coefficient

D electrical displacement, Coulombs-m-2

E effective Young's modulus of blade structure, lb-in-2, or electric field
intensity, V-m-1

f equivalent flat plate drag area of fuselage, in2

G effective shear modulus of blade structure, lb-in-2

Iβ blade flapping inertia, mr dr mR
R

2

0

1
3

3∫ =  (uniform blade)

Iθ blade pitch moment of inertia, mk dxm

R
2

0∫
k average value of inverse of reduced velocity, b r
Kβ blade flapping root spring rate, in-lb-rad-1

Kθ blade pitch root spring rate, in-lb-rad-1

L number of out-of-plane bending assumed modal functions
Lw section lift force, lb-in-1

Lw nondimensional section lift force, L m Rw Ω2

m blade mass distribution, lb-sec2-in-1/in
M number of torsional assumed modal functions, or section Mach number
Mφ section pitching moment about c 4 , in-lb/in

Mφ nondimensional section pitching moment, M m Rφ Ω2 2

N number of aerodynamic evaluation points along blade; number of rotor
blades

R rotor radius, in
x blade radial coordinate, in
t time, sec
T rotor thrust, lb
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u blade axial elastic deflection, in
u normalized blade axial deflection, u u R≡
U section normalized velocity, V RΩ
v blade in-plane elastic deflection, in
v normalized blade in-plane elastic deflection, v v R≡
V∞ helicopter forward flight velocity, in sec-1

w out-of-plane elastic deflection, in
w normalized blade in-plane elastic deflection, w w R≡
x nondimensional radial coordinate, x R
yac distance of aerodynamic center forward of pitch axis, in

e distance of mass center forward of pitch axis, in
α airfoil section angle of attack, rad
αs rotor shaft angle, rad
γ blade Lock number, γ ρ β≡ acR I4

Γ section nondimensional circulation, Γ = L Uz

Γ1
linear model (unstalled) component of section nondimensional circulation

Γ2
component of section nondimensional circulation due to stall

Γm2 normalized section pitching moment deviation due to stall, Γm mC U2 2≡
∆i normalized width of ith aerodynamic segment
ε permittivity of piezoelectric material,

ε
∗ section rotation rate with respect to the air mass, rad-sec-1

φ torsional deflection, rad
xi normalized midpoint position of ith aerodynamic segment

λT rotor tip-path plane inflow ratio, λ νT R= Ω
µ rotor advance ratio, V R∞ Ω
ν rotor uniform inflow induced velocity, in sec-1

ρ air density, lb-sec2-in-1/in3

σ rotor solidity, σ π= Nc R

θ section pitch angle, θ θ φ= +con  , rad

θcon blade control pitch setting, θ θ θ ψ θ ψcon c s= + +0 1 1cos sin  , rad

θ0 blade collective pitch input angle, rad
θ1s lateral cyclic pitch input, rad
θ1c longitudinal cyclic pitch input, rad
ω φ nondimensional root pitch natural frequency, K Iφ θ Ω2

Ω rotor rotational speed, rad sec-1

ψ blade azimuth angle, rad

( )
∗ ( )d dψ

( )+ ( )d dx
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AN AEROELASTIC ANALYSIS OF HELICOPTER ROTOR BLADES
INCORPORATING PIEZOELECTRIC FIBER COMPOSITE TWIST ACTUATION

W. Keats Wilkie
NASA Langley Research Center, Hampton, VA 23681

K. C. Park
University of Colorado, Boulder, CO 80309

ABSTRACT

A simple aeroelastic analysis of a helicopter rotor blade incorporating embedded piezoelectric
fiber composite, interdigitated electrode blade twist actuators is described.  The analysis consists
of a linear torsion and flapwise bending model coupled with a nonlinear ONERA based unsteady
aerodynamics model.  A modified Galerkin procedure is performed upon the rotor blade partial
differential equations of motion to develop a system of ordinary differential equations suitable for
dynamics simulation using numerical integration.  The twist actuation responses for three
conceptual full-scale blade designs with realistic constraints on blade mass are numerically
evaluated using the analysis.  Numerical results indicate that useful amplitudes of nonresonant
elastic twist, on the order of one to two degrees, are achievable under one-g hovering flight
conditions for interdigitated electrode poling configurations.  Twist actuation for the
interdigitated electrode blades is also compared with the twist actuation of a conventionally poled
piezoelectric fiber composite blade.  Elastic twist produced using the interdigitated electrode
actuators was found to be four to five times larger than that obtained with the conventionally
poled actuators.

1. INTRODUCTION

Significant undesirable fixed system and rotating system vibratory loads continue to exist on all
helicopters.  These vibratory loads are primarily the result of responses generated by unsteady
aerodynamic loads acting on the main rotor system while the helicopter is in forward flight.  Since
high vibratory loads result in increased maintenance requirements and poor ride quality, much
effort has been devoted to finding means to eliminate or reduce them.

Many mechanical devices, mounted either in the fixed system (fuselage), or rotating system (hub,
and occasionally blades), have been developed for this purpose.1, 2  The majority of these
mechanisms essentially attempt to alleviate the undesirable vibratory loads by introducing
counteracting inertial and damping forces.  This approach has the drawback of requiring the
addition of mechanisms, with attendant mass and complexity and sometimes performance
degradation, to the vehicle.  In contrast to these methods, the techniques of higher harmonic
control (HHC),3, 4 and individual blade control (IBC),5, 6, 7, 8 seek to eliminate vibrations at their
aerodynamic source; by directly altering the unsteady aerodynamic forces acting on the rotor
blades.  This is accomplished by introducing cyclic variations in the root pitch of each blade, either
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by clever manipulation of the existing (swashplate) control system, or through the use of auxilliary
pitch actuators mounted within the rotating system.

HHC active control through a swashplate-type mechanism is restricted by fundamental rotor
dynamics to cyclic pitch inputs at the blade passage frequency (NΩ), and the next higher and
lower harmonics of the blade passage frequency ((N ) 1)Ω), only, where N is the number of rotor
blades, and Ω is the rotational speed.  HHC can also be limited by the typically low bandwidth
characteristics of swashplate hydraulic actuation systems.

The IBC approach, on the other hand, enables individual control of blade pitch at essentially
arbitrary frequencies.  This is accomplished through auxilliary pitch control actuators placed
within the rotating system.    With few exceptions, hydraulics based systems have proven to be the
best means of providing the power and bandwidth in the rotating system necessary for useful IBC.
However, the added complexity associated with delivering hydraulic power from the fixed system
to the rotating system has made practical implementation of  IBC on production helicopters
prohibitive.

1.1 Smart material IBC actuation schemes.

Methods of using smart materials to deflect trailing edge control flaps,9, 10, 11 or actuate blade
twist12,13 electromechanically have been advanced as a more practical alternative means of
implementing some form of IBC.  Electrical power for smart material actuators has the advantage
of being easily deliverable from the fixed system to the rotating system through conventional
slipring devices.  This avoids the complications associated with transferring fixed system hydraulic
power for individual blade actuators to the rotating system.  The bandwidth characteristics of
certain smart material actuators are also superior to those of hydraulic and conventional
electromechanical, or servomotor, actuators.

Currently, trailing edge flap actuation has the advantage over other smart material IBC schemes in
that available smart material power and displacement capabilities are very near those required for
a practical rotor blade flap actuator design.  Disadvantages of the trailing edge flap include the
undesirable addition of complicated mechanisms to the rotor system, and to a lesser extent, the
degradation of flap aerodynamic force and moment performance due to hinge lines.

Blade twist actuation is attractive by virtue of being mechanically simple and aerodynamically
efficient.  However, as rotor blade structures tend to be relatively stiff in torsion, induction of
useful levels of twist using smart materials can be difficult.  In addition, the added mass of the
embedded smart materials can also be prohibitive when developing practical induced twist blade
systems.  Despite these drawbacks, some encouraging developments in twist actuation of smart
material structures continue to be made.  Most recently, research in anisotropic twist actuation of
plate structures using piezoelectric fiber composites (PFC)14, 15 has demonstrated that relatively
high levels of twist actuation are potentially achievable.  The application of interdigitated
electrode technology (IDE)16 can in principle enhance the performance of these materials even
further.
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1.2 Previous work related to analysis of on-blade active control.

To date, relatively little analytical work has been reported detailing the aeroelastic behavior of
rotor blades incorporating either trailing edge control flaps or controllable twist.  Millott and
Friedman17 have given the most comprehensive treatment so far with respect to the unsteady
aerodynamics of rotor blade trailing edge control flaps, and their employment as vibration
reduction devices.  Specific methods for actuation of control flaps were not addressed in their
work however.  Use of control flaps to generate higher harmonic controllable twist was
investigated analytically and experimentally in full-scale wind tunnel tests performed in the 1970's.
The analytical portions of this investigation were conducted by Lemnios and Dunn,18 with wind
tunnel results reported by Wei and Weisbrich.19  Significant vibration reductions were reported
using flap actuation at 0Ω, 1Ω, 2Ω, 3Ω, and 4Ω frequencies.  However, flap actuation was
achieved only by use of a relatively complex system of mechanical linkages, which would not be
generally suitable for flight test or production vehicles.  A related investigation of the performance
effects of variable camber was also carried out by Dadone, Cowan, and McHugh.20  Analytical
results suggested that significant improvements in overall rotor performance were achievable,
especially when airfoil camber changes were used to induce blade twist.  Techniques for affecting
camber changes on rotor blades were discussed only in conceptual terms.

Even less has been reported on the analysis of the aeroelastic behavior of rotor blade structures
specifically incorporating embedded smart material actuators.  Song and Lebrescu21 developed the
equations of motion for a rotating, thin-walled, cantilevered beam structure incorporating
embedded piezoelectric actuators.  No aerodynamic forcing was included in their study, and
actuation of torsional motion was not considered.  Nitzsche and Breitbach recently reported the
results of a study to evaluate the ability of embedded piezoelectric materials to attenuate out-of-
plane bending and torsional vibrations on a rotor blade structure.22  To accomplish this, they
developed a rotor blade aeroelastic model incorporating quasi-static aerodynamics and a
"directionally attached piezoelectric crystal" bending-torsion actuation scheme similar to that
developed by Barrett.  They concluded that the lightly damped torsional blade modes could be
significantly affected on a practical blade structure without saturation of the piezoelectric
materials.

1.3 Scope of this effort.

For the most part, aeroelastic analysis of rotor blades incorporating on-blade actuation is still very
much in its infancy.  In particular, there is a lack of simple analytical models suitable for
conducting preliminary conceptual control and design studies for embedded smart material blade
structures.  In light of this, and in order to gain greater insight into the control and aeroelastic
response issues related to induced twist smart structure rotor blades, a simple aeroelasticity model
for a piezoelectric fiber composite twist actuated helicopter rotor blade has been developed by the
authors.  This model is derived specifically for use in the investigation of phenomena related to
torsional control and response of helicopter rotor blades incorporating piezoelectric twist.  In this
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paper, a description of the derivation and numerical implementation of this model is given.
Additionally, numerical results demonstrating the twist actuation potential of three conceptual
full-scale helicopter blade designs are shown.  The work reported here is thought to be the first
specifically related to the aeroelastic analysis of piezoelectric fiber composite twist actuated
helicopter rotor blades.

2. ANALYTICAL  MODEL DESCRIPTION

A rotor blade aeroelasticity model may be thought of as a unification of several basic analytical
submodels.  These submodels are, at a minimum, 1) a formulation of the blade structural
dynamics, including all forces related to blade rotation, 2) a formulation of the aerodynamic forces
and moments acting on the blade, 3) an inflow model, and 4) a control formulation.  These
submodels may be coupled in many ways depending on the degree of complexity of the overall
formulation.  In this development, they will be conceptually linked as shown in Figure 1.
Theoretical descriptions of each submodel are given below.

2.1 Structural formulation

The equations of motion used here to describe the elastic torsion and out-of-plane bending
behavior of an isolated helicopter rotor blade are adapted from the general elastic bending and
torsion deformation equations developed by Kaza and Kvaternik.23  Due to the complexity of
these equations, and elastic rotor blade equations of motion in general, it is usually necessary to
apply some simplifying assumptions to the complete set of equations in order to obtain a more
mathematically manageable model.  An ordering scheme approach is used here to accomplish this.
Use of such a procedure enables one to avoid a great deal of the complicated algebra associated
with retention of "high order" nonlinear terms in the equations, and ensures that the most
physically significant terms are retained.

The first step in employing an ordering scheme is to rewrite the equations of motion in a
nondimensional form.  An order is then assigned to each nondimensional term in the equations
relative to an assumed scale factor, ε , and the equations are rewritten retaining only terms of the
lowest order, and terms of one order greater.  Terms of two orders greater and higher are usually
discarded.  For this study ε will be assigned a value of 0.10, which is equal to the assumed order
of magnitude of torsional deformations, hence, O(0)=1, O(ε)=0.10, O(ε2)=0.01, etc.

Evaluation of the order of each nondimensional term is based on the intended application of the
final equations, e.g., stability, vibration, etc., and representative full-scale helicopter structural and
flight parameters.  The ordering of parameters used in this study is based on schemes applicable to
rotorcraft vibrations, and is shown in Table 1.

Three additional assumptions related to the blade geometry are also made.  These are, 1) that the
blade precone angle and built in twist are assumed to be zero, 2) the blade structural cross-section
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is assumed to be doubly symmetric, and 3) the blade pitch radius of gyration is assumed to be
approximately equal to the km2  cross section integral (i.e., km1/km2<<1 ).

Applying the ordering scheme, with the additional assumptions given above, to the equations of
Reference 23 yields the following partial differential equations of motion for blade out-of-plane
bending and torsion.  (Blade coordinates are illustrated in Figure A1.)

Out-of-plane (flapwise) bending (O(ε), Ο(ε4)):
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The blade section tension force, T, is based on an O(1) approximation, and is given by

T R mxdx
x

≅ ∫Ω2 2
1

.

(3)

Temporal differentiations (denoted by *) in the above equations are performed with respect to the
rotor azimuth, ψ, which, for constant rotational velocityΩ , is ψ ≡ Ωt .  Spatial differentiations
(denoted by +) are conducted with respect to the nondimensional blade radial location, x x R≡ .
Descriptions of the coordinate systems used to describe the blade motions may be found in
Appendix A.

Note that the single underlined terms in Equation 1 are actually of O(ε4), but are retained in order
to ensure mathematical symmetry in the resulting mass and stiffness matrices.  Double underlined
terms in Equation 1 are also of O(ε4), but are kept so that the equation is a more physically
meaningful representation of out-of-plane bending.  Technically, retention of all O(ε4) terms
would require inclusion of additional terms associated with the in-plane ("lead-lag") bending
deformation of the blade; terms that have been consistently ignored in this treatment.  A higher
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order approximation of the tension force would be also be necessary for consistency.  We re-
emphasize that these equations were developed primarily for use in investigations related to blade
torsional response and control.  Consequently, studies of out-of-plane vibratory response using
the present formulation should be done with some degree of caution.

QPE , in Equation 2, represents the piezoelectric induced twisting moment, which will be derived
in the control formulation section below.

A modified Galerkin procedure24 is used here to obtain modal solutions to Equations 1-3.  In this
case, superposition solutions for w and φ of the form,

( ) ( ) ( )w x w W xl l
l

L

,ψ ψ=
=
∑

1

,

(4)

( ) ( ) ( )φ ψ φ ψx xm
m

M

m, =
=

∑
1

Φ ,

(5)

are assumed, where L and M are the number of out-of-plane bending and torsional modal
functions respectively.  In the modified Galerkin procedure, these modal functions need only
satisfy the geometric boundary conditions on the blade.  Work due to any nonfulfilled "natural"
boundary conditions is accounted for with additional boundary terms in the equations.
Substituting Equations 4 and 5 into Equation 1, and performing the appropriate integrations,
yields a set of L ordinary differential equations of the following form:
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where n L= 1, .  A similar procedure performed on Equation 2 yields an additional set of M
ordinary differential equations;
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with p M= 1, .

The Kβ  and Kθ  terms in Equations 6 and 7, which do not appear in Equations 3 and 4, are used

to represent finite stiffnesses present at x = 0.  These terms can be used to account for the
stiffness of a mechanical flapping spring placed at the blade root, or the inherent flexibility of the
pitch control system.

It should be noted that all stiffness, damping, and inertia terms contained in the above equations
represent the structural properties of the combined piezoelectric/passive material blade structure.
The derivation of the stiffness terms is contained in Appendix B.

2.2 Aerodynamic formulation

The sectional lifting forces and moments are calculated using a technique based on the ONERA
dynamic stall model developed by Tran and Petot.25  The ONERA model uses differential
equations in time to describe the unsteady aerodynamic lifting forces and pitching moments,
including dynamic stall effects, acting upon an airfoil section undergoing arbitrary pitch and
plunge motion.

2.2.1 Section lift formulation

Modifications to the ONERA model for general use in rotorcraft aerodynamic formulations have
been made by Peters,26 with nondimensional circulations used as the state variables instead of
aerodynamic coefficients.  The simplified lift circulation equations of Reference 26, which are well
behaved in the reverse flow region of the rotor disk, but do not give lift reversal, are used here (8,
9).
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( )L L UY X= + +0 1 2Γ Γ
(8a)

( )L UX Y= − +Γ Γ1 2

(8b)

L bs Uz Y0 =
∗

(8c)

k aU bz z Y zΓ Γ1

∗ ∗
+ = +λ λ δ ε

(9a)

( )

( )

k d w k w d

w d U C e k U C
C

U

z z z z

z z X z z X z
z

Y

2
2 2

2 2
2

2 2

2 1

1

Γ Γ Γ

∆ ∆
∆

∗∗ ∗

∗ ∗

+ + +

= − + + +















∂
∂α

(9b)

L0  in equation (8c) is the nondimensional apparent mass lift. LX   and LY   are the components of

the nondimensional lift in the airfoil section X and Y directions respectively.  The nondimensional

section velocities U, UY,  and UZ, and section angle of attack, α, are derived in Appendix C.  ε
∗

 in
equations (9) is defined as the geometric rate of rotation of the airfoil with respect to the air mass
(see Appendix C), and is given here by

ε ε
ψ

θ φ
∗ ∗ ∗

+≡ ≅ + +d

d
wcon .

(10)

∆Cz in Equations 9 is the difference between the linear model static lift coefficient, Czl and the
measured stalled lift coefficient, Czs, i.e.,

∆C C Cz zl zs= − .

Plots of the static lift coefficient data used in this model are shown in Figure 2.  These curves are
extrapolated from curves given in References 28 and 29.

The angle of attack dependent coefficients (s, λ, δ, d, w, and e) are derived from experimental
two-dimensional unsteady airfoil tests using the parameter identification scheme described in
Reference 25.  Parameter values for the ONERA OA212 rotorcraft airfoil are used in this model,
and are shown in Table 2.

2.2.2 Section Pitching Moment Formulation
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Improvements to the basic ONERA pitching moment formulation have been made by Petot,27

with further modifications made by Chouchane28 (given also by Peters, Chouchane, and Fulton29),
and this is the representation used in this model.  In this approach, the unstalled component of Cm

is given explicitly through the static moment coefficient, which is a function of angle-of-attack
only.  This results in the elimination of one state per spanwise aerodynamic evaluation point in the
model.  Plots of the static pitching moment data used here are shown in Figure 3.  These curves
are extrapolated from curves given in References 28 and 29, and from data provided by Tang.30

The stalled contribution to the section pitching moment is calculated using a circulation based
model similar to that developed for section lift.   The second order differential equation describing
this stalled pitching moment circulation, defined as Γm mUC2 2≡ , is shown below (11).

k a k r r U C E k Ui m i mi i m i mi m i mi i mi mi i y i
2

2 2 2Γ Γ Γ ∆
∗∗ ∗ ∗

+ + = − −
(11)

The coefficients am, rm, and Em in Equation 11 were found by Petot (Reference 27) to have similar
characteristics for many airfoils.  Expressions for these coefficients, omitting subscripts, may be
written as

a a a Cm z= +0 2
2∆ ,

(12a)

( )r r r Cm z= +0 2
2 2

∆ ,

(12b)
E E Cm z= 2

2∆ .

(12c)

Values of a0, a2, r0, r2, and E2 used in the present formulation are taken from the generic "mean
airfoil" values of Reference 27, and are provided in Table 3.

2.2.3 Airloads calculation
The aerodynamic forcing integrals present in Equations 6 and 7 are calculated by first evaluating
the sectional aerodynamic forces and moments per unit length at N discrete points along the blade
span.  Section aerodynamic forces and moments are further assumed to be constant over the
width of each section.  Consistent with the ordering scheme assumed in the structural formulation
above, the final expressions for these aerodynamic loading integrals are

( )[ ]L W dx
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U L W dxw l i lr

r
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ri , in Equations 13 and 14, is the radial location of the inboard edge of the ith aerodynamic

section,

r xi i i= − ∆ 2 ,

where xi  is the nondimensional radial location of the ith aerodynamic evaluation point, and ∆ i

the associated nondimensional section width.

2.3 Inflow model

A uniform rotor inflow model, based on momentum theory (e.g., Gessow and Myers31), is used in
this formulation.  A uniform inflow assumption, i.e., the assumption of constant inflow velocity at
every location across the rotor disk, is not unreasonable for hovering or vertical flight conditions,
although it is not very realistic for forward flight.  Nevertheless, it is used here for computational
simplicity in the numerical model.  More complex inflow representations will be incorporated into
future versions of this analysis.

For an implicitly trimmed rotor operating at thrust coefficient CT, and forward flight advance ratio
µ, the uniform induced velocity ratio with respect to the tip-path-plane may be written as

λ µ α λTPP s i= +tan ,

(15)
where

λ
µ λ

i
T

TPP

C
=

+2 2 2
.

(16)

An Newton-Raphson iterative approach, from Johnson32 is used to numerically evaluate λTPP in
the above expression, i.e. (17)
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+
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1

2 2

2 2 3 2

2 2 3 2

2

2

1
2

tan /

/

.

(17)

Usually only two or three iterations are required for the calculation to converge, starting with

λ µ α
µ

TPP s
T

T

C

C
= +

+
tan

2 22
.

(18)

2.4 Control formulation

2.4.1 Trim control
Swashplate control angles are calculated using trim equations adapted from the harmonic balance
equations of Reference 32.  These equations, rewritten assuming zero blade twist and no first
harmonic flapping with respect to the rotor shaft, are given by

θ
µ

σ
λ µ

µ µ
0

2 2

2 4

1
3

2

6 3

2
1

1

2

1
9

4

=
+








 + −





− +

C

a
T

TPP

,

(19a)

θ
µ

σ
µλ µ

µ µ
1

2

2 4

8

3

6
2 1

3

2

1
9

4

s

T
TPP

C

a= −





 + −





− +
,

(19b)

θ
µβ

µ
1

0

2

4

3

1
1

2

c =
+

,

(19c)

where β 0  in equation 19c is the estimated blade coning angle given by
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β

γ

µ µ
µ µ

σ
µ µ λ0

2 4

2 4 2 48

1
9

4

1
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18

3

2

6 1

6

7

12

1

4
=

− +
− +



 + − +











C

a
T

TPP .

(19d)

The control settings predicted using these trim equations are reasonably effective at eliminating
first harmonic flapping in unstalled flight.  However, under heavily stalled forward flight
conditions, these equations will fail to trim the rotor effectively.

2.4.2 Piezoelectric twisting moment
The piezoelectric actuator equation development detailed here borrows heavily from the approach
used by Bent, Hagood, and Rogers.15 Their equations, however, have been rewritten here
explicitly for the case of in-plane polarization of the piezoelectric lamina material, or interdigitated
electrode (IDE) poling.16  Such an IDE configuration, in principal, allows the so-called "d33

effect" to be used to maximum advantage to enhance the inplane strain actuation capabilities of
the piezoelectric lamina.  This in turn should result in an increase in torsional actuation capability
of the lamina with respect to conventionally poled schemes.

Development of the actuator equations begins with an alternate version of the standard linear
piezoelectric constitutive relations.33  Assuming structural orthotropy in the piezoelectric material,
and applying the plane stress assumption (T3=T4=T5=0) to the constitutive relations yields
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ε
ε

ε
.

(20)

The S3,  S4, and S5 strains, although not necessarily zero, will be neglected here.

The poling direction of the piezoelectric material will be defined to be in the material 1-axis
direction (see Figure 4), rather than in the more familiar out-of-plane direction (3-axis).  The usual
indexing nomenclature in the piezoelectric free-strain coupling coefficients will be retained here
however.  This is solely to allow the d33, and d13, piezoelectric material coefficients to be more
readily identified in the resulting equations.  (Note that the conventionally poled case may easily
be obtained from these equations by setting d33  equal to d31.)
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Rewriting Equation 20 with strains (S) as independent variables:
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(21)

or more compactly,

D

T
e

e c

E

S








=
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ε S

T E
,

(22)

where

( ) ( )c s e dc dc dE E E S T E T= = = −
−1

ε ε .

(23)

The relationships between field components given in the global, or beam coordinate system, and
those in a system rotated by an angle θ  about the 3 direction (actuator system) are given by (see
Figure 5)

( )~ ~ ~ ~
D R D E R E S R S T R T= = = =

−
E E S S

T 1
,

(24)

where

D E S T≡
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≡
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(25)

(similarly for 
~
D , 

~
E , 

~
S , and 

~
T ).
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The appropriate transformation matrices for this coordinate rotation are

R s = −
− −

















cos sin cos sin

sin cos cos sin

cos sin cos sin cos sin

2 2

2 2

2 22 2

θ θ θ θ
θ θ θ θ

θ θ θ θ θ θ

,

(26)

R E = −
















cos sin

sin cos

θ θ
θ θ
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0

0 0 1

.

(27)

In terms of the actuator coordinate system, Equation 22 then becomes

~

~
~ ~

~ ~

~

~
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T

e
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=
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ε S

T E
.

(28)

Substituting Equations 24 into Equation 28 yields constitutive relations expressed in terms of the
global field variables.
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(29)

For convenience, electric fields and displacements will be defined as being specified along the
actuator system 1-direction only.  The electric field within the piezoelectric material will also be
assumed to be an average of the field strength between alternating electrodes.  (See Reference 16
for a complete description and discussion of the actual electric field distributions produced using
IDE schemes.)  Equation 29 is then

~ ~ ~

~ ~

~
D ES

S

S
T T

S
T E

S

1 11 1

T
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R e R c R S









=
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ε
.

(30)

A material orientation angle that maximizes the actuator induced shear stress is desired here.  This
will occur for orientation angles of θ = ± °45 .  For the case of θ = + °45 , the rotated material
matrix of Equation 30 becomes
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(31)

Extracting the torsional  terms yields

( )
( ) ( )
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(32)

At this point , for simplicity, we will assume that the structurally effective portion of the blade is a
closed, rectangular, thin-walled section (Figure 6).  Following a mechanics of materials approach,
the piezoelectric induced shear flow, qPE, , for such a structure may be written as

q T tPE PE= 6 .

(33)

where tPE  is the piezoelectric lamina thickness.  The total piezoelectric torsional moment may
then be expressed as

( )Q rq ds hwq A e e E tPE PE PE e PE= = = − −∫ 2 2 1
2 33 31 1

~ ~ ~
.

(34)
where h and w are the height and width of the rectangular cross-section, and Ae  is the area

enclosed by the wall centerline.

Converting to standard piezoelectric coefficients, via Equation 33, yields

( ) ( )( )Q A d c c d c c E tPE e
E E E E

PE= − − + −33 11 12 31 12 22 1
~ ~ ~ ~ ~

.

(35)

For further convenience, we will rewrite Equation 35 in terms of the assumed maximum
produceable piezoelectric strain, Λmax, yielding
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where Λ max max

~≡ d E33 1 .

Substituting Equation 36 into the expression for the generalized nondimensional piezoelectric
control moments, from Equation 7,  yields
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(37)

If the electrode layers are divided into P independently energizable sections, the average electric
field intensity within the pth section is given by

( ) ( )~
,

~
maxE x E ep p1 1ψ ψ= , r x rp p< < +1

(38)

where ep  is the electric field generalized field strength, rp  is the radial location of the inboard

edge of the pth electrode segment, and
~

maxE1  is the maximum electrical field permissable without

depolarization of the piezoelectric material.

Substituting Equation 37 into 38 yields the generalized piezoelectric control moments in their final
form
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(39)

Material properties appearing in Equation 39 for the piezoelectric laminae used in the numerical
portion of this study are given in Table 4.

3. NUMERICAL IMPLEMENTATION

The equations of motion for the structural and aerodynamic degrees of freedom are rewritten in
state variable form for numerical integration.  The structural state derivatives thus will be of the
following form:
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(40)

with the structural state vector defined as

q x

x
struct ≡
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.

(41)

The definitions of M, C, K, etc., may be found in Appendix D.  For each aerodynamic evaluation
point along the blade, three state variables are required to define the lifting force and two to
define the pitching moment.  The aerodynamic state derivatives for each such point are
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(42)

with aerodynamic state vector

q aeroi
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m i

m i
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2
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(43)

Expressions for the f and g coefficients appearing in the aerodynamic state space equations are
given in Appendix E.

The combined state vector is defined as
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q
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(44)

For N radial aerodynamic points, the resulting state space model will consist of a system of
( )2 5L M N+ +  first order differential equations with, in general, time varying coefficients.  These

state variable equations are numerically integrated using a fourth and fifth order Runge-Kutta-
Fehlberg algorithm, with the integrations performed with respect to rotor azimuth angle, ψ.

For the numerical case studies presented in this report, we have used one out-of-plane bending
mode and three torsional modes.   Here, ( )W x1  was defined as

W x x R1 = = ,

(45)

which is the rigid body flapping deflection mode shape.

( )Φ m x  were assumed to be the first three torsional comparison functions developed by

Karunamoorthy and Peters,34 i.e.,
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,

x x

x x

.

(46)

The odd numbered torsional comparison functions in Equation 46 have been found to be good
approximations of the exact torsional nonrotating mode shapes for pinned blade-root boundary
conditions.  The even numbered polynomials approximate the cantilevered boundary condition
nonrotating mode shapes.  Use of polynomial approximations instead of the exact nonrotating
mode shapes is done solely to simplify calculation of the integral coefficients appearing in
Equations 6 and 7.

4. RESULTS AND DISCUSSION

4.1 Piezoelectric twist actuated rotor blade conceptual design
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Three conceptual piezoelectric induced twist rotor blade designs were examined in this study.
These designs were developed in order to illustrate the twist actuation capabilities of the three
general cases of piezoelectric actuation suggested by inspection of Equation 36.  These three
general cases are:

Case 1:  d d31 33≠ , ~ ~c cE E
11 22= .   This is the case of actuation lamina possessing piezoelectric free-

strain anisotropy, and in-plane stiffness isotropy.  This corresponds to a configuration where
actuation layers are composed of solid, or monolithic, PZT materials, and are polarized according
to the IDE scheme.  This case will be referred to as IDE/MON for the remainder of the
discussion.

Case 2:  d d31 33≠ , ~ ~c cE E
11 22≠ .  This is the case where the actuation lamina possess both free-strain

and stiffness anisotropy.  This would be true of a piezoelectric fiber composite, interdigitated
electrode actuation scheme.  This case will be referred to as IDE/PFC.

Case 3:  d d31 33= , ~ ~c cE E
11 22≠ .  This is the case of free-strain isotropy (or near isotropy) but with

stiffness anisotropy in the actuating layers.  This would be the case for a piezoelectric fiber
composite structure utilizing a conventional poling scheme, or a case similar to the Directionally
Attached Piezoelectric scheme, originally proposed by Barret12 and developed experimentally by
Chen and Chopra.13  This scheme will be refered to as DAP/PFC in the following sections.

Stiffness, inertial, and actuation parameters for three conceptual helicopter blade designs, each
representing one of the three cases above, were developed using full-scale helicopter parameters
similar to those of the Sikorsky H-34 main rotor blade.  The H-34 main rotor blade is a relatively
simple, closed-section spar structure, and was easily idealized as a rectangular box section for the
purposes of this study.  These baseline blade parameters are summarized in Table 5.

Structural parameters not identical to the baseline blade parameters are shown for each of the
piezoelectric twist blade designs in Table 6.  Uniform blade properties were assumed in each case
for simplicity.  The piezoelectric material thickness fractions, tPE,, given here were calculated
assuming that the blade total mass of each design could be no greater than 120% of the baseline
full-scale helicopter blade mass.  (The choice of 120% was essentially arbitrary, but represents a
reasonable weight constraint on the design of the conceptual piezoelectric twist blades.)  As a
result, the torsional natural frequencies of the blade structures vary somewhat from the baseline
design.  The resulting natural frequencies of all of the blade designs are given in Table 7.
Aerodynamic parameters used for the numerical case studies were not varied between the designs
and are shown in Table 8.

4.2 Numerical twist actuation authority results

Numerically generated twist actuation authority results for each of the three piezoelectric induced
twist blade designs are shown in Figures 7-9.  These results are for a typical one-g hovering flight
condition, which corresponds to a thrust coefficient of CT = 0.00465.  One electrode segment
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extending from x = 01,  is assumed for all three structures.  A sinusoidal electric field input with
linearly increasing frequency and peak amplitude of E1max  was used to generate the frequency

responses (amplitude and phase with respect to the electric field input signal) shown in the figures.
In these figures the elastic twist is defined as the difference between the elastic torsional deflection
at the blade tip and that at the blade root.

Figure 7 illustrates the structural response of the IDE/MON case.  A sustained oscillatory elastic
twist magnitude of approximately ±1.25° to ±1.5° is generated for excitation frequencies below
the first torsional frequency.  At the first torsional resonance, which is predominately an elastic
torsional response, the amplitude increases to approximately ±2.25°.  A smaller torsional response
occurs at the second and third torsional resonance frequencies.

The resonant response at the second and third torsional frequencies was found to vary widely
depending on the amount of material and aerodynamic damping present in the structure.  As the
torsional aerodynamic damping, from Equation 14, is in general proportional to b 2 , the
corresponding aerodynamic damping for these two modes is almost negligible.  Some additional
form of damping is desirable then at these higher frequencies to avoid unrealistically large
torsional deflections.  As such, a level of material damping equivalent to 0.5% of critical damping
was assumed for each of the cases presented here.

The actuation results for the IDE/PFC lamina design are shown for the same flight condition in
Figure 8.  A level of actuation capability on the order of ±1° to ±1.25° of elastic twist below the
first torsional resonance, and ±1.5°  at the first torsional mode resonance frequency is shown here.
This is a level of performance slightly less than that demonstrated with the IDE/MON
configuration.  Although this may seem to imply that monolithic PZT laminae are more desirable
for inclusion in piezoelectric actuated structures, manufacturing and poling nonplanar composite
structures with solid PZT layers may not be practical.  Piezoelectric fibers on the other hand could
be incorporated into complex composite aerospace structures using, for the most part, established
fiber composite construction techniques.

Figure 9 displays the twist actuation capabilities of the DAP/PFC blade design.  Structurally, the
DAP/PFC blade is identical to the IDE/PFC blade design, although the DAP/PFC blade utilizes
conventional poling of the piezoelectric fibers.  Relatively low nonresonant twist actuation is
demonstrated for this actuation case, i.e., around ±0.2° to ±0.25° of elastic twist.

Comparison of the elastic twist actuation response of all three cases is shown in Figure 10.  The
effect of the large free-strain anisotropies present in the IDE schemes on the magnitude of elastic
twist is readily apparent.  Both IDE poling cases exibit generally four to five times the twist
actuation magnitudes of the conventionally poled configuration.  Such magnitudes of elastic twist
are generally regarded as being sufficient for practical use in a vibration reduction scheme using
individually controllable blade twist.
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5. CONCLUSIONS

A simple helicopter rotor blade aeroelasticity analysis was developed and used to numerically
demonstrate the twist actuation potential of embedded piezoelectric actuators for three nominally
full-scale helicopter rotor blade designs.  It was numerically demonstrated that useful nonresonant
levels of oscillatory blade twist, i.e., on the order of ±1°, can potentially be produced without the
addition of an excessive amount of piezoelectric actuator mass or saturation of the piezoelectric
actuator materials, using an interdigitated electrode poling scheme with either a piezoelectric fiber
composite or monolithic PZT actuation design.

The analysis and numerical model in its present form (i.e., with rigid flapping, elastic torsion and
stall aerodynamics), should be sufficient for an examination of  the potential of piezoelectric twist
actuation to alleviate high oscillatory control loads induced by blade stall flutter.35  Such a study is
underway by the authors.  Improvements to this model, such as the addition of multiple flapwise
bending modes and a simple nonuniform inflow model, are also being undertaken.
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APPENDIX A.  COORDINATE SYSTEMS AND TRANSFORMATIONS

Several coordinate systems are used to describe the flap-torsion kinematics of the rotor
blade.  These coordinate systems are shown in Figure A1 , and described below.

1. XIYIZI is an inertial reference frame with origin at the hub center of rotation, XI axis
oriented in the direction of forward flight, and negative ZI axis aligned with the rotor
rotation vector.

 
2. X1Y1Z1 is a hub-fixed rotating reference frame, with the Z1 axis in the direction of the

rotor rotation vector. The X1Y1Z1 system is rotated about the Z0 axis by the blade
azimuth angle ψ.  The X1 axis is coincident with the undeformed blade elastic axis.

 
3. x0y0z0 is a blade-fixed reference system located at an arbitrary point (x) along the blade

undeformed elastic axis.
 
4. xyz is a reference system fixed in the deformed blade, and translated with respect to

the x0y0z0 system.
 
5. x2y2z2 is an intermediate system obtained by rotation of the xyz system about y by the

angle ′w .
 
6. x3y3z3 is a reference system fixed in the deformed blade obtained by rotating the x2y2z2

system about y2 by the total rotation angle θ θ φ= +con .  x3 is tangent to the deformed

elastic axis.

Coordinate transformations due to rotations between the various systems are given below.

Transformation from the inertial system (XIYIZI) to hub-fixed rotating system(X1Y1Z1):

1
0

0

0

0 0 1

T =
−

−

















cos sin

sin cos

ψ ψ
ψ ψ

(A1)

Transformation from the blade-fixed xyz system to the intermediate deformed system
x2y2z2 (rotation about y by ′w ):

2
1

0

0 1 0

0

T =
′ ′

− ′ ′

















cos sin

sin cos

w w

w w

(A2)
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Transformation from the x2y2z2 system to the x3y3z3 system (rotation about y2 by θ):

3
2

1 0 0

0

0

T =
−

















cos sin

sin cos

θ θ
θ θ

(A3)
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APPENDIX B.  GENERALIZED FORCE DISPLACEMENT RELATIONS FOR A
COMPOSITE THIN WALLED BEAM STRUCTURE

Rehfield36 presents a general theory for characterizing the structural properties of thin
walled composite beam structures.  Portions of this theory necessary for deriving the beam
stiffness properties of an idealized rectangular thin walled rotor blade structure are given
below.

Membrane resultant stresses and strains for a composite laminate are related by the
membrane stiffness matrix, A, as follows,

N

N

N

A A A

A A A

A A A

S

S

S

1

2

6

11 12 16

12 22 26

16 26 66

1
0

2
0

6
0












=

































(B1)

The elements of A are formed from the individual laminate plane stress stiffnesses
according to Classical Laminated Plate Theory37, i.e.,

( )A c tij ij
E

k k
k

n

=
=

∑
1

, ( )i j, , ,= 1 2 6 ,

(B2)

where n is the number of plies of the laminate.

With the assumption that the hoop stress, N2, is zero, the hoop strain, S2
0 , may be written

as

( )
S

A S A S

A2
0 12 1

0
26 6

0

22

=
+

.

(B3)

Applying equation B3 to B1, and rewritting the extensional and shear stresses in terms of
the remaining strains yields

N

N

K K

K K

S

S
1

6

11 12

12 22

1
0

6
0









= 












,

(B4)

where the K stiffnesses are given by
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( )
K A

A

A11 11
12

2

22

= − ,

(B5)

K A
A A

A12 16
12 26

22

= − ,

(B6)

( )
K A

A

A22 66
26

2

22

= − .

(B7)

The relation between the generalized elastic beam forces and generalized displacements
used in the blade equations of motion of this paper may then be expresed as

 

N

M

M

C C C

C C C

C C C

u

w

x

x

y

















=
















′
′
′′













11 14 15

14 44 45

15 45 55

φ

(B8)

The elements of matrix C correspond to the beam stiffnesses of the blade equations of
motion as follows:

C K ds EA11 11= ≈∫ ,

(B9)

C
A

c
K ds GJe

44

2

2 22

4
= ≈∫ ,

(B10)

C K z ds EI55 11
2= ≈∫ ηη ,

(B11)

C
A

c
K dse

14 12

2
= ∫ .

(B12)

Integrations in equations B9-12 are performed around the contour of the beam section,
with Ae the area enclosed by the contour perimeter, and c the contour length.

For the blade structural configurations discussed in this paper, coupling stiffnesses C15 and
C45 are identically zero.  The extension-torsion coupling stiffness, C14, is zero for the
monolithic PZT actuation structure.  The fiber composite structures will inherently contain
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some extension twist coupling, resulting in a nonzero C14.  This coupling, however, is
relatively small for the particular configurations studied in this paper and was not included
in the blade equations of motion.  Future, more extensive, developments of the blade
equations will include these elastic couplings.
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APPENDIX C.  DEFINITION OF SECTION ANGLE OF ATTACK AND
SECTION ROTATION RATE WITH RESPECT TO THE AIR MASS

C.1  Section angle of attack:

The two dimensional angle of attack of the ith airfoil section (αi) is defined by

α i
Y

X i

U

U
=







−tan 1

(C1.1)

where UX and UY (omitting subscripts) are the components of the nondimensional section
airflow velocity normal and parallel to the section chord.  UX and UY expressed in the
customary airfoil coordinate system (Figure C1) are

U
V

R
UX

y

y≡
−

= −
Ω

, U
V

R
UY

z
z≡ =

Ω
;

(C1.2)

with the total nondimensional section airflow velocity given by

U U UX Y= +2 2 .

(C1.3)

Spanwise flow, i.e., flow in the x3 direction is neglected.

Vz and Vy are the components of the section airfoil velocity with respect to the air mass in
the x3y3z3 system (see Appendix A), viz.

V V V

T T T V T T V

=











= −

= −

V

V

V

x

y

z

a b

a b

3 3

3
2

2
1

1
0

0 3
2

2
1

1

(C1.4)

0Va and 1Vb  are, respectively, the velocity of the air mass in the inertial system, and the
velocity of the airfoil section due to blade motion with respect to the x0y0z0 system, given
by
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0 0Va

sV

=
−












∞ cosα

ν
, 1

0

Vb r

rw

=
′












Ω
&

(C1.5)

Making  appropriate small angle assumptions for αs, ′w , and θ (and implicitly for θcon and
φ), yields for V:

( ) ( )
( ) ( )
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V w

V V w

V V w
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cos &
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ψ θ ψ νθ

θ ψ ψ ν
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ψ ν
θ ψ ψ νθ θ

θ ψ ψ ν θ

Ω
Ω

Ω
Ω

(C1.6)

Dividing by ΩR yields the components of the nondimensional section velocity in the blade
coordinate system (3-system)

U

U

U

w w w x

w x w

w x w

x

y

z

TPP

TPP

TPP












=

− +





− − − − +





− − + −

































+ + +
∗

+ +
∗

+ +
∗

µ ψ λ

µ ψ µ θ ψ λ θ θ

µθ ψ µ ψ λ θ

cos

sin cos

sin cos

1 ,

(C1.7)

where (*) denotes differentiation with respect to the rotor azimuth, and (+) differentiation
with respect to x/R.  Substituting Uz and Uy  into equation C1.1 and then into equation
C1.2 yields the section angles of attack.

C.2:  Section rotation rate:

The rotation rate of the airfoil section with respect to the air mass will be defined as

ε ε
ψ

ε εθ
∗ ∗ ∗

′≡ = +d

d
w ,

(C2.1)



32

whereε θ
∗

 is the rotation rate of the airfoil due to blade pitch motion, andε
∗

′w  is the
effective rate rotation of the airfoil due to the component of the rotor rotation vector lying
along the section pitch axis, x3.

ε θ
∗

 is given simply by

ε ∂θ
∂ψ

θ θ φθ
∗ ∗ ∗ ∗

≡ = = +con .

(C2.2)

ε
∗

′w  may be found by examination of the vector component of the rotor rotation lying
along the x3, i.e.,

&ε ∂ψ
∂

∂ε
∂ψ

ε′
′

∗
′= = = ⋅w

w
w

t
Ω Ωk i1 3 ,

(C2.3)

where k1 is a unit vector in the direction of the positive Z1 axis, and i 3 a unit vector in the
direction of the positive x3 axis.  Rewriting C2.3 yields

ε
∗

′
+= ⋅ = ′ ≅w w wk i1 3 sin ,

(C2.4)
for small rotations.

The total rotation rate with respect to the air mass may then be written as

ε θ φ
∗ ∗ ∗

+= + +con w .
(C2.5)
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APPENDIX D.  SYSTEM MATRICES

Equations 6 and 7 may be rewritten as a system of M + N ordinary differential equations
of the form

M C K aero PEx x x f f f
∗∗ ∗

+ + = + + θ ,

(D1)

where x is a vector of structural generalized displacements, given by

{ }x = w w wL M

T

1 2 1 2L Lφ φ φ .

(D2)

The symmetric mass matrix, M, in equation D1 is given by

[ ] [ ]
[ ] [ ]M

I J

J K
T=













00 00

00 00
,

(D3)

with
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I I

I I
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11
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00
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22
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00 00
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M O M

L L

,

(D4)

I W W dxmn m n
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1
≡ ∫ ,

(D5)
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J J J

J J

J J
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L LM

00

11
00

12
00

1
00

21
00

22
00

1
00 00
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L

M

M O M

L L

,

(D6)

J eW dxmn m n
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1
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 (D7)
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1
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(D9)

C is a symmetric structural damping matrix,

[ ] [ ]
[ ] [ ]C
I

K
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*

*

22
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,

(D10)

with

*

* * *
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*
*

K
G J
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11
40

1
≡ + +∫ Ω

Φ Φ .

(D14)

K is a linear stiffness matrix of the form
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I J

J K
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(D15)

where
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faero , fPE  and fθ 0
 are, repectively, the nondimensional aerodynamic forces,

nondimensional piezoelectric induced twisting moments, and nondimensional steady state
inertial propeller moments, and are shown below:
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APPENDIX E.  AERODYNAMIC STATE SPACE COEFFICIENTS

Coefficients associated with lift formulation:

f
k

z
1 = −

λ

(E1)

( )f a U b kz y z2 = + ′λ ε δ
(E2)

f d w kz z3 2= −
(E3)

( )f w d kz z4
2 2 21= − +

(E4)

f f U C e k U C
C

UX z z X z
z

Y5 4= + +











∗ ∗
∆ ∆

∆∂
∂α

 (E5)

Coefficients associated with pitching moment formulation:

g a km1 = −
(E6)

g r km2
2= −

(E7)

g g U C E U km m Y3 2= −
∗

∆ .

 (E8)
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Table 1.  Ordering of nondimensional parameters appearing in equations of motion.
(ε ≡ 010. ).

( )u R O= ε 2 ( )EI m R OΩ2 4 3= ε

( )v R O= ε 2 ( )G m OΩ2 6= −ε
( )w R O= ε ( )EA m R OΩ2 2 2= −ε

( )φ ε= O ( )k R OA
2 2 4= ε

( )θ ε= O ( )k R Om
2 2 4= ε

( )e R O= ε 3 ( )B AR O1

4 4∗ = ε

( )e R OA = ε 3 ( )B AR O2

3 3∗ = ε
( )x R O= 1 ( )J R O4 9= ε
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Table 2.  Lift based ONERA stall coefficients for the OA212 airfoil.

Parameter Value Physical Description
λ 0.2 time delay parameter
s 5 apparent mass quantity
δ ( )∂

∂α
C

Cz
z− +4 1 1 43. ∆ lift coefficient to pitch rate

relation

w ( ) ( )0 10 0 023 13 13 21 7

0 3 21 7

. . , .

. , .

+ − ° − ° < °
> °

α α α
α

u damping factor
(u is a unit step function.)

d 0 105. w stall natural frequency
e ( )[ ] ( )2 51 121 13 131− − ° − °−. tan . α αu phase shift parameter
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Table 3.  Coefficients for stalled pitching moment circulation equation.  Values are for the
"mean airfoil" of Reference 27.

Parameter Value
r0 0.2
r2 0.2
a0 0.25
a2 0.1
E2 0.573
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Table 4.  Lamina structural properties.  Piezoelectric lamina properties are derived from
values reported by Rogers and Hagood.

Property passive blade
structure

monolithic PZT
lamina

IDE/PFC
lamina

DAP/PFC
lamina

c11 12.8e6 psi 9.6e6 psi 4.5e6 psi 4.5e6 psi
c22/c11 1 1 0.60 0.60
c12/c11 0.375 0.29 0.24 0.24
c66 4.0e6 psi 3.4e6 psi 8.3e5 8.3e5
d31/d33 - -0.5 -0.4 1
ρ 0.1 lbs/in3 0.27 lbs/in3 0.21 lbs/in3 0.21 lbs/in3

Λmax - 500 µε 500 µε 250 µε
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Table 5.  Baseline helicopter rotor parameters.

Parameter Baseline blade value
Ω (rad/sec) 23.2

R (in) 336
γ 9.44

c R 0.0488
n 4
σ 0.0622
CT 0.00465

f Rπ 2 0.015

ω θ θ θ= K IΩ2 16.0

m (slinch/in) 0.00142
mkm

2  (slinch-in2/in) 0.0175

I Iθ β 0.000327

e/c 0
GJ

I Rβ Ω2

0.00552

h (in) 1.84
w (in) 6.11
t (in) 0.141
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Table 6.  Structural parameters for numerical examples.

Parameter IDE/MON IDE/PFC DAP/PFC
GJ

I Rβ Ω2

0.00447 0.00365 0.00365

γ 8.28 8.28 8.28
t tPE 0.1875 0.300 0.300
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Table 7.  Calculated nondimensional blade natural frequencies for numerical examples.

Parameter Baseline blade value IDE/MON IDE/PFC DAP/PFC
ω β 1.0 1.0 1.0 1.0

ω φ1
6.10 5.60 5.14 5.14

ω φ2
18.19 16.64 15.22 15.22

ω φ3
61.02 59.67 58.58 58.58
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Table 8.  Aerodynamic parameters for numerical examples.

Parameter value
c1 ( )− +π

4
1 1 4 2. M

c2 ≈ c1

c3 ( )( )( )− − − −−3

16
126 1 53 15 0 71π
. . tan .M

M 0.30
yac 0

N 5
x {0.28   0.44   0.60   0.76   0.92}
∆ {0.16   0.16   0.16   0.16   0.16}
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Figure 1.  Conceptual diagram for a unified rotor blade piezoelectric aeroelastic analysis.
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Figure 2.  Static lift coefficient curves (linear model and stalled) for the OA212 airfoil.
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Figure 3.  Static pitching moment curves (linear model and stalled) for the OA212 airfoil.
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Figure 4.  Material axis system for piezoelectric fiber composite assuming interdigitated
electrode poling scheme.
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Figure 5.  Rotation of piezoelectric fiber composite material system with respect to the
global (blade) system.
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Figure 6. Idealized rectangular, thin-walled, closed-section piezoelectric blade structure.
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Figure 7.  Blade frequency response:  monolithic PZT (MON) twist actuation with
interdigitated electrode poling scheme; CT = 0.00465, µ = 0.0.
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Figure 8.  Blade frequency response:  PFC twist actuation with interdigitated electrode
poling scheme; CT = 0.00465, µ = 0.0.
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Figure 9.  Blade frequency response:  PFC twist actuation with conventional electrode
poling scheme (DAP); CT = 0.00465, µ = 0.0.
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Figure 10. Comparison of elastic twist frequency response for IDE/MON, IDE/PFC, and
DAP/PFC actuation schemes; CT = 0.00465, µ = 0.0.
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Figure A1.  Rotor blade coordinate systems.  Note that the blade undeformed elastic axis
lies along X1.  (Section pitch angle, θ, is not shown.)
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Figure C1.  Airfoil section coordinate system.


